3.3.89 \(\int \frac {\sqrt {\tan (c+d x)}}{\sqrt [3]{a+i a \tan (c+d x)}} \, dx\) [289]

Optimal. Leaf size=81 \[ \frac {2 F_1\left (\frac {3}{2};\frac {4}{3},1;\frac {5}{2};-i \tan (c+d x),i \tan (c+d x)\right ) \sqrt [3]{1+i \tan (c+d x)} \tan ^{\frac {3}{2}}(c+d x)}{3 d \sqrt [3]{a+i a \tan (c+d x)}} \]

[Out]

2/3*AppellF1(3/2,4/3,1,5/2,-I*tan(d*x+c),I*tan(d*x+c))*(1+I*tan(d*x+c))^(1/3)*tan(d*x+c)^(3/2)/d/(a+I*a*tan(d*
x+c))^(1/3)

________________________________________________________________________________________

Rubi [A]
time = 0.10, antiderivative size = 81, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {3645, 129, 525, 524} \begin {gather*} \frac {2 \sqrt [3]{1+i \tan (c+d x)} \tan ^{\frac {3}{2}}(c+d x) F_1\left (\frac {3}{2};\frac {4}{3},1;\frac {5}{2};-i \tan (c+d x),i \tan (c+d x)\right )}{3 d \sqrt [3]{a+i a \tan (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[Tan[c + d*x]]/(a + I*a*Tan[c + d*x])^(1/3),x]

[Out]

(2*AppellF1[3/2, 4/3, 1, 5/2, (-I)*Tan[c + d*x], I*Tan[c + d*x]]*(1 + I*Tan[c + d*x])^(1/3)*Tan[c + d*x]^(3/2)
)/(3*d*(a + I*a*Tan[c + d*x])^(1/3))

Rule 129

Int[((e_.)*(x_))^(p_)*((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> With[{k = Denominator[p]
}, Dist[k/e, Subst[Int[x^(k*(p + 1) - 1)*(a + b*(x^k/e))^m*(c + d*(x^k/e))^n, x], x, (e*x)^(1/k)], x]] /; Free
Q[{a, b, c, d, e, m, n}, x] && NeQ[b*c - a*d, 0] && FractionQ[p] && IntegerQ[m]

Rule 524

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[a^p*c^q*
((e*x)^(m + 1)/(e*(m + 1)))*AppellF1[(m + 1)/n, -p, -q, 1 + (m + 1)/n, (-b)*(x^n/a), (-d)*(x^n/c)], x] /; Free
Q[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n - 1] && (IntegerQ[p] || GtQ[a
, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rule 525

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Dist[a^IntPar
t[p]*((a + b*x^n)^FracPart[p]/(1 + b*(x^n/a))^FracPart[p]), Int[(e*x)^m*(1 + b*(x^n/a))^p*(c + d*x^n)^q, x], x
] /; FreeQ[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n - 1] &&  !(IntegerQ[
p] || GtQ[a, 0])

Rule 3645

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dis
t[a*(b/f), Subst[Int[(a + x)^(m - 1)*((c + (d/b)*x)^n/(b^2 + a*x)), x], x, b*Tan[e + f*x]], x] /; FreeQ[{a, b,
 c, d, e, f, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rubi steps

\begin {align*} \int \frac {\sqrt {\tan (c+d x)}}{\sqrt [3]{a+i a \tan (c+d x)}} \, dx &=\frac {\left (i a^2\right ) \text {Subst}\left (\int \frac {\sqrt {-\frac {i x}{a}}}{(a+x)^{4/3} \left (-a^2+a x\right )} \, dx,x,i a \tan (c+d x)\right )}{d}\\ &=-\frac {\left (2 a^3\right ) \text {Subst}\left (\int \frac {x^2}{\left (a+i a x^2\right )^{4/3} \left (-a^2+i a^2 x^2\right )} \, dx,x,\sqrt {\tan (c+d x)}\right )}{d}\\ &=-\frac {\left (2 a^2 \sqrt [3]{1+i \tan (c+d x)}\right ) \text {Subst}\left (\int \frac {x^2}{\left (1+i x^2\right )^{4/3} \left (-a^2+i a^2 x^2\right )} \, dx,x,\sqrt {\tan (c+d x)}\right )}{d \sqrt [3]{a+i a \tan (c+d x)}}\\ &=\frac {2 F_1\left (\frac {3}{2};\frac {4}{3},1;\frac {5}{2};-i \tan (c+d x),i \tan (c+d x)\right ) \sqrt [3]{1+i \tan (c+d x)} \tan ^{\frac {3}{2}}(c+d x)}{3 d \sqrt [3]{a+i a \tan (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [F]
time = 5.28, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {\tan (c+d x)}}{\sqrt [3]{a+i a \tan (c+d x)}} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

Integrate[Sqrt[Tan[c + d*x]]/(a + I*a*Tan[c + d*x])^(1/3),x]

[Out]

Integrate[Sqrt[Tan[c + d*x]]/(a + I*a*Tan[c + d*x])^(1/3), x]

________________________________________________________________________________________

Maple [F]
time = 0.76, size = 0, normalized size = 0.00 \[\int \frac {\sqrt {\tan }\left (d x +c \right )}{\left (a +i a \tan \left (d x +c \right )\right )^{\frac {1}{3}}}\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/3),x)

[Out]

int(tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/3),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/3),x, algorithm="maxima")

[Out]

integrate(sqrt(tan(d*x + c))/(I*a*tan(d*x + c) + a)^(1/3), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/3),x, algorithm="fricas")

[Out]

-(3*2^(2/3)*(a/(e^(2*I*d*x + 2*I*c) + 1))^(2/3)*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*(
-I*e^(4*I*d*x + 4*I*c) - 2*I*e^(2*I*d*x + 2*I*c) - I)*e^(4/3*I*d*x + 4/3*I*c) - (a*d*e^(4*I*d*x + 4*I*c) - 4*a
*d*e^(3*I*d*x + 3*I*c) + 4*a*d*e^(2*I*d*x + 2*I*c))*integral(1/2*2^(2/3)*(a/(e^(2*I*d*x + 2*I*c) + 1))^(2/3)*s
qrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*(-I*e^(6*I*d*x + 6*I*c) + 30*I*e^(5*I*d*x + 5*I*c)
 - 8*I*e^(4*I*d*x + 4*I*c) + 24*I*e^(3*I*d*x + 3*I*c) - 11*I*e^(2*I*d*x + 2*I*c) - 6*I*e^(I*d*x + I*c) - 4*I)*
e^(4/3*I*d*x + 4/3*I*c)/(a*d*e^(7*I*d*x + 7*I*c) - 6*a*d*e^(6*I*d*x + 6*I*c) + 11*a*d*e^(5*I*d*x + 5*I*c) - 2*
a*d*e^(4*I*d*x + 4*I*c) - 12*a*d*e^(3*I*d*x + 3*I*c) + 8*a*d*e^(2*I*d*x + 2*I*c)), x))/(a*d*e^(4*I*d*x + 4*I*c
) - 4*a*d*e^(3*I*d*x + 3*I*c) + 4*a*d*e^(2*I*d*x + 2*I*c))

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {\tan {\left (c + d x \right )}}}{\sqrt [3]{i a \left (\tan {\left (c + d x \right )} - i\right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)**(1/2)/(a+I*a*tan(d*x+c))**(1/3),x)

[Out]

Integral(sqrt(tan(c + d*x))/(I*a*(tan(c + d*x) - I))**(1/3), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/3),x, algorithm="giac")

[Out]

integrate(sqrt(tan(d*x + c))/(I*a*tan(d*x + c) + a)^(1/3), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\sqrt {\mathrm {tan}\left (c+d\,x\right )}}{{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{1/3}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(c + d*x)^(1/2)/(a + a*tan(c + d*x)*1i)^(1/3),x)

[Out]

int(tan(c + d*x)^(1/2)/(a + a*tan(c + d*x)*1i)^(1/3), x)

________________________________________________________________________________________